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Abstract. Kayne (1994) and Moro (2000) argue that an asym-
metric c-command relation between syntactic constituents X
and Y maps onto linear precedence relations between the lex-
ical items in X and Y respectively, the Linear Correspondence
Axiom (LCA). Kayne and Moro demonstrate that this assump-
tion, together with the properties of linear orderings (totality,
asymmetry and transitivity), imposes linguistically significant
limits on the class of possible syntactic structures. In this
short paper, we explore an alternative approach to deriving
restrictions on syntactic structure that depends not on a spe-
cific assumption about linearization, but instead focuses dir-
ectly on the non-existence of structural symmetry. Specific-
ally, we consider the class of trees, NoAut, which admit no
(non-trivial) automorphism (nonidentity mappings between
the nodes that preserve structural relations). We demonstrate
that NoAut imposes restrictions similar to the ones derived
from the LCA, which have proven useful in syntactic theory.
However, we prove that the LCA class is a proper subset of
NoAut class. We briefly consider the linguistic relevance of
the extra flexibility of the NoAut class.
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1 Introduction
Natural language sentences have hierarchical structure that can be
encoded as a tree, a mathematical object that Keenan & Moss 2015
characterize as follows:

Definition 1. A simple tree is a pair 〈N , D 〉 where N is a finite set
of nodes and D is a weak partial order over N (i.e., it is reflexive,
antisymmetric and transitive) obeying the following conditions:

1. Rootedness: there is a y such that for all x , y D x ;

2. Chain Condition: for all x , y , z , if x D z and y D z , then x D y
or y D x .

A significant discovery of syntactic theory is that this general class
of representations is too broad: not all simple trees correspond to
possible syntactic structures. Chomsky 1970 and Jackendoff 1977
posit the X-bar template as a means of limiting the local syntactic
configurations that can relate syntactic heads to their associated ar-
guments/satellites both across constructions and across languages.
Kayne 1984 argues that syntactic structures across languages are re-
stricted to binary branching. Subsequent work has attempted to show
that such restrictions stem from more basic principles. Under one ap-
proach, Kayne 1994 derives limits on possible syntactic structures,
at least in part, from the necessity of mapping between hierarchical
structure and the linear ordering among the words in the sentence.1
To do this, he first defines the set TERM of terminal nodes in a tree

1. Within the Minimalist Program, an alternative line of explanation has explored
the potential of “third factor” principles of efficient computation for restricting pos-
sible syntactic structures (Chomsky 2005). Binary branching has been argued to
be a consequence of the nature of a computationally simple Merge operation or
the nature of search in the establishment of probe-goal relations. Configurational
restrictions such as those deriving from X-bar theory might derive from the prop-
erties of the labeling algorithm. In the absence of a precise characterization of the
relevant notion of computational efficiency, it remains difficult to evaluate such
proposals or to precisely characterize their formal consequences. For this reason,
we put them aside here.
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and a function d that maps nodes in a tree to the terminal nodes that
they dominate.

TERM= {x | if x D y then y = x }
d (x ) = {y ∈TERM | x D y }

d (〈x , y 〉) = {〈u , v 〉 | u ∈ d (x ), v ∈ d (y )}
d (R ) =
∪
〈x ,y 〉∈R

d (〈x , y 〉)
Given these definitions, Kayne’s proposal, the Linear Correspond-
ence Axiom, can be stated as follows:

Definition 2. Linear Correspondence Axiom (LCA). in a well-
formed syntactic structure, d (ACC) is a strict linear ordering (a total,
asymmetric and transitive relation) on TERM, where

CC= {〈x , y 〉 | ¬y D x and if z 6= x and z D x , then z D y }
ACC= {〈x , y 〉 | x CCy and ¬y CCx }

The LCA instantiates the idea that hierarchical asymmetry, as instan-
tiated in the ACC relation, is crucial in producing an ordering of the
terminals. Structures that exhibit symmetry do not yield a linear or-
dering and are ruled out. As Kayne and Moro 2000 demonstrate, the
LCA derives linguistically significant restrictions on the class of trees,
like those imposed by binary branching and the X-bar template. Yet,
the character of the mapping the LCA assumes between hierarchy
and linear order is to a certain degree stipulative. In this paper we
propose an alternative to the LCA that retains the idea that syntactic
structure avoids symmetry. However, instead of adopting a parochial
derivation of precedence, we directly characterize the notion of struc-
tural (a)symmetry, using the notion of automorphism from abstract
algebra.

2 Tree Automorphisms and their Absence
Given two simple trees, we define the notion of isomorphism as a
map between them that establishes a kind of structural equivalence.
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Definition 3. An isomorphism between trees T = 〈N , D 〉 and T ′ =
〈N ′, D ′〉 is a function f : N → N ′ such that (i) f is a bijection, and
(ii) for all x , y ∈N , x D y iff f (x )D f (y ).

For the pair of trees given below, the function f is an isomorphism
between them: it relates each node of one tree to exactly one in the
other (i.e., it is a bijection) and dominance relations are preserved.
For example, node d dominates nodes d, e and f in the left tree, and
f (d) = v dominates f (d), f (e), and f (f), i.e., v, w, and x, in the right
tree.

a

b

c

d

e f

u

v

w x

y

z

f : a −→ u
b 7−→ y
c 7−→ z
d 7−→ v
e 7−→w
f 7−→ x

If an isomorphism exists between two trees, we say that the trees are
isomorphic. Isomorphisms have the interesting characteristic of pre-
serving structural properties of nodes in a tree. For example, each
node in the lefthand tree above is mapped to a node in the right tree
that is identical with respect to depth, i.e., the length of its path to
the root. In fact, this preservation of node depth must hold for any
isomorphism. To see why, let T1 and T2 be simple trees and let f be
a isomorphism between them. The set of nodes dominating a node
n in T1 is {x | x D1n}. Because f is a bijection, this set must be of
the same cardinality as the set of dominators of the node f (n ) cor-
responding to n in T2: {y | y D2 f (n )}; otherwise we would be able
to find at least one node m that dominates n but for which f (m )
does not dominate f (n ) (or conversely), in violation of the definition
of isomorphism. Similar arguments can be constructed for the pre-
servation of other properties under bijection, such as the number of
c-commanding nodes, or whether a node is a terminal node or the
root. An even stronger example of a property preserved under an iso-
morphism f is subtree structure: given simple trees T1 and T2 related
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by f , for every m , n such that f (m ) = n , there is an isomorphism
between the subtrees rooted in m and n as well, which is defined by
restricting the domain of f to the nodes dominated by m . Essentially
any property that can be defined from the dominance relation is pre-
served under isomorphism, using arguments similar to the one given
here.2

We now define an automorphism to be an isomorphism between
a tree and itself. For example, for the left tree given above, the func-
tion which swaps nodes e and f and maps other nodes to themselves,
is an automorphism. Because nodes e and f stand in the dominance
relation with precisely the same nodes in the tree (i.e., only them-
selves), swapping one with the other preserves the relevant structural
properties in the original tree. Automorphisms like this one highlight
points of structural symmetry in a tree structure: nodes that can be
swapped in an automorphism are ones that have equivalent structural
properties. The identity function, which maps every node to itself,
meets the definition of automorphism for any tree at all. We call this
a trivial automorphism because it does not establish any symmetries
between distinct nodes in the tree.

Interestingly, there are some trees for which this trivial auto-
morphism is the only one available. The following is the simplest
such structure that includes branching nodes:

a

b c

d

Here, none of the nodes can be “swapped” by an automorphism. To
see why, observe that each node in this tree has a distinctive property
that must be retained under automorphism: the number of dominated

2. Note that since linear order is not represented in simple trees as we have defined
them, ordering between nodes that can be read from these diagrams is not pre-
served.
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and dominating nodes. An automorphism must map terminal nodes
like b and d to other terminal nodes, but in this case these nodes can-
not be exchanged as they are dominated by distinct numbers of nodes.
The non-terminal nodes a and c cannot be exchanged either, since a
is dominated by no other nodes (as the root), whereas c is dominated
by one other. Consequently, the only automorphism for this tree is
the trivial automorphism. We define NoAut to be the class of trees
for which no non-trivial automorphisms exist. These are trees which
have no points of structural symmetry. Like the set of LCA-satisfying
trees, the NoAut class imposes linguistically significant constraints
on what configurations are possible. NoAut permits trees that accord
with the X-bar template, such as the following:3

YP

XP

X

Y′

Y ZP

Z

XP

X YP

Y ZP

Z

At the same time, and like the LCA, NoAut rules out structures
that include symmetries that run afoul of X-bar theory, with a head
as complement of another head, or two phrasal sisters.

XP

X Y

S

XP

X

YP

Y

3. We label the nodes of the tree to facilitate linguistic interpretation. However,
these labels play no role in determining membership of a tree in NoAut. While
this is also the case for LCA-satisfying structures, trees with specifiers do require
special treatment under the LCA, as discussed in the text above, which may reflect
a sensitivity to a difference in labeling.
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For the left tree, the bijection that swaps X and Y, i.e., mapping X
to Y, Y to X, and XP to itself, is a non-trivial automorphism. For
the right tree, the bijection swapping both branches, i.e., mapping X
to Y, XP to YP, Y to X, YP to XP, and S to itself, is a non-trivial
automorphism.

Given the connection that the LCA posits between structural
asymmetry and linearizability, it is interesting to understand the con-
nection between the class of LCA-admissible trees and the NoAut
class. Our main result, whose proof is given in the appendix, is the
following:

Theorem 1. LCA ⊆ NoAut

This theorem tells us that any tree excluded by NoAut is also excluded
by the LCA. However, it allows for the possibility that there are trees
that satisfy NoAut, but which run afoul of the LCA. One case in which
we see this involves structures with specifiers. Kayne 1994 is forced
to assume that specifiers are adjoined to the phrase to which they
attach. By adopting the assumptions concerning c-command rela-
tions in adjunction proposed by May 1985 (see also Frank, Hagstrom
& Vijay-Shanker 2002), Kayne is able to render structures with spe-
cifiers compatible with the LCA. However, if we assume instead that
symmetric syntax is regulated by the NoAut restriction, there is noth-
ing inherently anomalous about structures with specifiers, as already
noted above. Thus, any reasons to put aside the adjunction analysis
of specifiers would support the use of NoAut in its place.

Nonetheless, NoAut does impose some constraints on trees that
are, at least at first glance, surprising. When a tree includes a specifier
has a structural configuration which mirrors the structure of its sister
X′, it is no longer in NoAut, as it admits a non-trivial automorphism:
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XP

ZP

Z WP

W

X′

X YP

Y

f : XP−→XP
ZP 7−→X′
X′ 7−→ZP
Z 7−→X
X 7−→Z

WP 7−→YP
YP 7−→WP
W 7−→Y
Y 7−→W

Interestingly, such an automorphism would fail to exist for this
tree if Z itself had a specifier or if either of the heads W or Y had
a phrasal complement. At present, we are unaware of patterns in
natural language that support such restrictions on possible syntactic
structures. These restrictions implicate a sensitivity to global struc-
ture, as they turn on the existence of isomorphic subtrees that are
sisters (the trees rooted in ZP and X′ in the case here). Nonetheless,
we leave it as an open empirical question whether this consequence
of NoAut has empirical support.

If we wish to permit structures with such global symmetries, one
possibility would be to consider only automorphisms that preserve
aspects of the node labeling. In the automorphism for the tree just
given, we have ZP and X′ that are exchanged by the automorphism.
By allowing only automorphisms that preserve, say, the bar-level of
a node’s label, we could eliminate this automorphism from consid-
eration and retain the well-formedness of this tree. Defining this re-
striction precisely would necessitate having an independent theory of
tree labeling. We leave for future work carrying this out in detail.

3 Concluding Remarks
To sum up, we have formalized the assumption that trees do not tol-
erate symmetry in terms of the absence of non-trivial automorph-
isms and shown that it leads to specific predictions about well-formed
structures, corresponding to a slight relaxation of the restrictions im-
posed by the LCA. Before concluding, we offer a few remarks to
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situate this work in a broader context and to lay out areas for future
exploration.

Note first that we have not provided empirical evidence in fa-
vor of the NoAut pattern of restrictions. However, it is important
to note that many of the arguments originally marshalled in favor of
the LCA-licensed structures can also be used as arguments in favor
of NoAut, as the relevant structural distinctions are also provided by
NoAut. And even within the class of trees that they both permit, we
take it to be an advantage that NoAut permits specifiers without the
need for specific assumptions about adjunction and its consequences
for c-command.

One interesting property of NoAut (shared with the LCA) is that
it is insensitive to the labeling assigned to the nodes of the tree. Con-
sequently, if it is necessary for nodes to be labeled with grammatical
categories or features, this will require an independent theory of la-
beling. As noted in the previous section, it is possible to allow the ex-
istence of labels to interact with what mappings over trees constitute
automorphisms (if some properties of the labels must be preserved
under automorphism). Furthermore, nothing in our formalization
depends on the presence or absence of phonological content in the
nodes in a syntactic tree. In contrast, under Moro’s (2000) dynamic
antisymmetry proposal, the absence of phonological content, either
as the result of movement or phonologically null elements, renders
a piece of structure immune to the effects of the LCA. It is possible
to modify the NoAut proposal to directly accommodate this intuition,
though a more intriguing alternative (at least for cases associated with
movement) might explore the use of multi-dominance structures (i.e.,
rooted directed acyclic graphs), so that movement introduces asym-
metries between nodes so that they can no longer be “swapped” by
an automorphism.

Given the abstractness of our proposal, the restrictions imposed
by NoAut may be applied to any kind of linguistic representation.
If there is reason to believe that symmetry must be avoided across
linguistic levels, we should expect to see the impact of the NoAut re-
strictions in the domains of morphology (Di Sciullo 2005) and phon-
ology (Raimy 2003), though the representations it restricts need not
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be simple trees.
NoAut is a restriction on fully-formed linguistic objects, and can

be seen as a representational, as opposed to derivational, constraint
on syntactic structures. It remains an open question whether there
is a derivational system that yields exactly the NoAut class. If we
require that the derivation operate in a local manner without access
to unbounded amounts of derivational context, this seems unlikely,
though such a conclusion will depend on the specifics of the possible
derivational operations Frank & Hunter 2021.

Finally, we would like to comment on the connection of the cur-
rent proposal with the work of Keenan & Stabler 2004, K&S, who
also employ the notion of automorphism in syntactic theory. For
K&S, automorphisms operate at the level of the grammar: an auto-
morphism is a bijection f mapping the set of grammatical atoms and
rules to itself, with the requirement that structures x and y can be
combined via rule R of the grammar to produce R (x , y ) if and only
if R ( f (x ), f (y )) can also be generated. K&S consider the elements or
properties that are invariant under such automorphisms and hypothes-
ize that these are co-extensive with the grammatically relevant ones
(though see Paperno 2012). While intriguing, this approach is ortho-
gonal to the one taken here, where automorphisms must preserve the
structure-defining dominance relation. Nothing in K&S’s approach
rules out symmetries in syntactic structures.

Appendix: Proof of Main Result
In this appendix, we present a proof of our main result concerning
the relationship between the class of LCA-satisfying trees and NoAut.
Note that we consider only simple trees, and not structures that admit
the adjunction structures of the sort exploited by Kayne 1994. Before
proceeding with the main theorem, we first establish several helpful
results.

Lemma 1. For every non-trivial automorphism φ over simple tree
T , there must exist distinct nodes a and b that share a parent such
that φ(a ) = b .
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Proof. Suppose that φ is a non-trivial automorphism on T . Consider
any pair of nodes a , b for which φ(a ) = b . Because these nodes
are related by an automorphism, they cannot stand in a domination
relation to one another, otherwise they would be of distinct depths
and cannot be related by isomorphism. This leaves two cases:

Case 1. If a and b share a parent, the lemma holds.
Case 2. Suppose that a and b do not share a parent. Let
r be the least node that dominates both a and b , i.e.,
any node that dominates a and b will also dominate r ,
and let ra and rb be the children of r that dominate a
and b respectively. It must be the case that φ(ra ) = rb :
φ(ra )must be a node of the same depth as ra and it must
dominate b . rb is the unique node having these proper-
ties. Since ra and rb share a parent by construction, the
lemma holds. □

The following corollary now follows from this Lemma together with
the fact that nodes related by isomorphism must be the roots of iso-
morphic subtrees.

Corollary 1. A simple tree T admits a non-trivial automorphism
if and only if there exist two isomorphic subtrees in T that share a
parent.

Lemma 2. A simple tree T satisfies the LCA if and only if for all
distinct x , y ∈TERM, either x ACCy or y ACCx .

Proof. We proceed with the forward direction. Let T = 〈N , D 〉 satisfy
the LCA. Suppose, for the sake of contradiction, that there exist dis-
tinct terminals x , y such that 〈x , y 〉 6∈ACC and 〈y , x 〉 6∈ACC. Then,
there exists a common ancestor w such that w D x and w D y . Since
neither x nor y asymmetrically c-command each other, it must be the
case that either both are the child of this common ancestor or neither
are.
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Case 1. Suppose that both terminals are the children
of w . This means that 〈x , y 〉 6∈ d (ACC) and 〈y , x 〉 6∈
d (ACC). It follows that d (ACC) is not total and thus not
a strict linear ordering. This is a contradiction.
Case 2. Suppose that both terminals are not the chil-
dren of the common ancestor. Then the common an-
cestor has two children a , b , such that a D x and b D y .
Then it follows that a asymmetrically c-commands y
and b asymmetrically c-commands x . This means that
〈x , y 〉 ∈ d (ACC) and 〈y , x 〉 ∈ d (ACC). It follows that
d (ACC) is not antisymmetric and thus not a strict linear
ordering. This is a contradiction.

Since both cases yield a contradiction, our original assumption must
have been incorrect. Thus, if T satisfies the LCA, it must be the case
for all distinct terminals x , y that x ACCy or y ACCx .

Next, we show the converse. Again let T = 〈N , D 〉 be a simple
tree and suppose that for any two distinct terminals x , y , either
x ACCy or y ACCx . From this it follows that d (ACC) is total, since
d (x ) will always contain x . Additionally, since ACC, as defined, is
an irreflexive, antisymmetric, and transitive relation, it follows that
d (ACC) is a strict linear ordering. Hence, T satisfies the LCA.

This Lemma, together with the observation that terminals at the
same depth in a tree cannot stand in a ACC relation, yields the fol-
lowing corollary:

Corollary 2. If a tree satisfies LCA, then its terminals have distinct
depths.

We now prove our main result.

Theorem 1. LCA ⊆ NoAut

Proof. Suppose that a simple tree T is not in NoAut, i.e., it has a non-
trivial automorphism f . To establish the theorem, it suffices to prove
that T does not satisfy the LCA. By Corollary 1, we know that any
T that is not a member of NoAut must have two isomorphic subtrees
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that share a parent, say node r . Now suppose that x is a terminal
in one such subtree (one must exist by the definition of subtree) and
let f (x ) be the node in the other subtree that isomorphism f maps
x to. Because f is an isomorphism, it follows that f (x ) is also a ter-
minal. Further, again because f is an isomorphism, x and f (x )must
have the same depth. By Corollary 2, this means that T containing
terminals x and f (x ) does not satisfy the LCA. □
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